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Abst rac t .  In this paper we consider numerical solution of hemivariational inequalities 
(I-IVI) by using nonsmooth, nonconvex optimization methods. First we introduce a finite 
element approximation of (HVI) and show that it can be transformed to a problem of 
finding a substationary point of the corresponding potential function. Then we introduce 
a proximal budle method for nonsmooth nonconvex and constrained optimization. Numer- 
ical results of a nonmonotone contact problem obtained by the developed methods are also 
presented. 
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1. I n t r o d u c t i o n  

Hemivar i a t iona l  inequali t ies ,  genera l iza t ions  of var ia t iona l  inequali t ies ,  were 
p resen ted  by  P a nag io topou lo s  [20]-[22]. The i r  origin is in n o n s m o o t h  mechan-  
ics of  solid, especial ly in n o n m o n o t o n e  con tac t  problems.  We refer  the  reader  
to  [18],[22] and  references there in  for the  m a t h e m a t i c a l  t h e o r y  and  the  appli- 
cat ions of  t he m .  

In this p a p e r  we present  a fully discrete  a p p r o x i m a t i o n  mode l  of  (HVI)  
based  on  the  finite e lement  t echnique  and  show t h a t  it  can  be numer ica l ly  
real ized by  using n o n s m o o t h ,  nonconvex  op t imiza t ion  m e t h o d .  This  mode l  
was i n t r o d u c e d  first for  sca la r -va lued  (HVI)  in [10],[11],[13],[14] and  t h en  
it was extended for vector-valued (HVI) in [12]. It is applicable for the 
unconstrained (HVI) problems and the constrained ones with a nonemp- 
ty, closed, convex  cons t ra in t  set. F u r t h e r m o r e ,  it can also used for the  
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so-called variational-hemivariational inequaiitites to which class the con- 
strained (HVI) problems belong as special cases (see [13]). In the case of 
variational inequalities it can be shown that our approximation is equiva- 
lent to the classical one presented in [4],[5]. The common property of the 
(HVI) problems, to which we have applied our approximation, is that the 
nonsmooth, nonmonotone behaviour of the problem is concentrated Oil the 
lower order terms, i.e. on the terms which do not contain the highest order 
derivatives. This is because the main tool, which is used for showing the con- 
vergence of the nonsmooth, nonmonotone terms in our approximation as the 
discretization parameter (which is in the finite element technique the size of 
the mesh of the partitions) tends to zero, is that the generalized directional 
derivative is upper semicontinuous (see [3]). And this approach cannot use 
for the terms which contain the highest order derivatives which converge 
only weakly in the considered function spaces. This is the main drawback 
and restriction which we have in the approximation theory of the (HVI) 
problems (and also in the general theory of (HVI)) compared to the corre- 
sponding one of variational inequalities in which one can exploit effectively 
the monotone nature, and consequently the convex nature of the problems. 

The outline of this paper is as follows. In the second section we formulate 
the considered vector-valued (HVI) which can also have constraints. For sim- 
plicity we have restricted ourselves to the case having a polynomial growth 
condition for the nonsmooth, nonmonotone term. For more general cases 
we refer to [18],[19]. Then we present a fully discrete FEM-approximation 
for it. It can be shown that the solutions of the discrete problems converge 
strongly on subsequences to the solutions of the continuous one (see the 
proof in [12]). In the third section we study the substationary points of the 
corresponding nonconvex potential functions of the continuous and discrete 
(HVI) problems. By a substationary point we mean that 0 belongs to the 
sum of the generalized gradient of the potential function and the normal cone 
of the constraint set. We show that the substationary points of the potential 
functions are also the solutions of the (HVI) problems and this holds for 
the both problems, the continuous and discrete ones. This is gives us the 
theoretical basis to numerically solve the discrete (HVI) problem by trans- 
forming it to a problem of finding of a substationary point of the nonconvex 
locally Lipschitz continuous function. Finally we consider the question if 
the substationary points are preserved as the discretization parameter tends 
to zero: we can only show that the global minima are preserved. The sub- 
section 4 is devoted to the question how to generate substationary points 
of the locally Lipschitz continuous function. We introduce a proximal bun- 
dle method for nonsmooth nonconvex and constrained optimization. Our 
method is a generalization of the proximal bundle method by [9] to the 
nonconvex constrained case. It is based on the method derived in [15] and 
it has also close relationship with the bundle trust method of [23]. In the 



HEMIVARIATIONAL INEQUALITITES AND NONSMOOTH OPTIMIZATION 403 

last section we study in detail an example of (HVI), namely a linear elastic 
contact problem with a nonmonotone frictionless foundation or with a rigid 
frictionless foundation and a nonmonotone layer above it. They can be for- 
mulated matematically as a unconstrained (HVI) problem or a constrained 
(HVI) problem, respectively. We apply our approximation model to them 
and solve the discrete problems numerically by transforming them to nons- 
mooth  minimization problems and using then the proximal bundle method 
introduced in the fourth section. For the other numerical methods which can 
be applied to the presented discrete (HVI) problems we refer to [22]. 

2. I t e m i v a r i a t i o n a l  i nequa l i t i e s  a n d  t h e i r  f in i te  e l e m e n t  
a p p r o x i m a t i o n  

2.1. FORMULATION OF TIlE CONTINUOUS PROBLEM 

Let V be a real Hilbert space and F/C N be a bounded domain with Lipschitz 
boundary I'. We shall denote by H" ][v the norm of V, V' the dual space of 
V and (., .)y the corresponding duality pairing. It will be supposed that  

V is compactly imbedded in L2(F/0; M), ~'~0 C ~'~ (1) 

o1~ 

V is compactly imbedded in Lu(r0; M),  r0 c r .  (2) 

We shall also have a nonempty, closed, convex subset K of V. Let j be a 
locally Lipschitz continuous function from M to satisfying firstly the general- 
ized sign condition which is expressed by means of the generalized directional 
derivative (see [3]) 

/~ _< c1 + c2[~l v~ �9 M, (3) 

and secondly the growth condition expressed by means of the generalized 
gradient of j (see [3]) 

rl �9 Oj(~) :=~ ]r/] _< C3(1 -4-1~[), (4) 

where C1, C2 and C3 are positive constants independent of ~ and 7?. Let 
a : V x V --* be a bilinear form satisfying the continuity and the coerciveness 
conditions (a, m positive constants): 

I~(v,~)l _< mllvllvll~llv Vv, w �9 v; (5) 
a(v, ~) _> o~llvll ~, vv �9 v, (6) 

and g be an element of V I. By a hemivariational inequality we mean the 
following problem (if (1) holds): 

find u �9 K and X(u) �9 L2(f~0; M) such that 
a ( u , v - u ) §  <g,v-u)v  V v � 9  (P1) 
and W(z) �9 Oj(u(z)) a.e. in f~0 
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or (if (2) holds) 

find u �9 K and X(u)  �9 L2(Fo; M) such that 

a (~ , , -  u)+ fr0 X. (~-  u) d~ > (g,~- uiv 
and X(x)  �9 Oj(u(x)) a.e. in r0. 

Vv e K (P2) 

In the sequel we shall use the symbol (P) if we mean  the bo th  problems (P1) 
and (P2) (we shall use this convention also in other notat ions) .  

T H E O R E M  1. There exists at least one solution of the problem (P). 

For the proof  of the above theorem we refer to [18],[19]. 

2.2. FORMULATION OF THE DISCI~ETE PROBLEM 

The  approximat ion of the problem (P) is constructed by using the finite 
element technique. Let h E (0, 1) be a discretization paramete r  which is 
related to the mesh size of the part i t ions used for the constructions of FEM- 
spaces. First we introduce finite-dimensional approximations Vh and Yh of 
the  spaces Y and Y1 -- L2(f~o; M) (or Y2 -- L2(r0; M)). In order to construct  
Vh we can use the s tandard  FEM-approach :  Let {Vh}he(O,1), Vh C C(~;  M), 
be a family of finite-dimensional subspaces of V satisfying the condition 

VV E Y { V h }  , V h E Vh : Vh --> V in V as h --* 0+. (7) 

If fl C 2 is a polygon, Vh can be, for example, a space of piecewise linear 
functions over some regular t r iangulat ion Th of ~/ (see [2]). Fur thermore,  
we need to approximate  the convex set K: Let {Kh}he(0,1) be a family of 
nonempty,  closed, convex subsets of Vh satisfying 

Vv E K B{Vh}, Vh E Kh : Vh ""+ V in  V a s  h --+ 0+; (8) 

{ V h } ,  Vh E K h  : Vh ~ ?] in  V a s  h --, 0+ ~ v e K (9) 

(see [4]-[6]). 
For construct ing the FEM-space  Yh we have to be more careful. As in the  

approximat ion of the variational inequalities of the second kind (see [4],[5]) 
we first fix a quadra ture  formula 

/(~)dx ~ ~ 4 / ( 4 ) ( o r  /(x) d~ ~ ~ 4 / ( 4 ) ) ,  (10) 
o i=1 o i=1 

where c~ are weights and x~ are nodal  points of the  quadra ture  formula,  
which we use to approximate  the integral fa0 X .  vdz  (or fro X .  vdx)  (in 
[4],[5] it is used for approximat ing the convex function Z(u) = fno j (u(x) )  
dx (or J(u) = fro j (u(x) )dx) ) .  Then  we define another  par t i t ion T~ of ~h 
(or Fo), ~2o C fin satisfying 
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( i)  ~ h  = ~ = ~ - h ,  
(ii) max;=1 ..... mh{ diameter  of K~)  < h; 

(iii) int K~ n int K~ = 0 Vi ~ j ;  
(iv) K [  is closed and has a nonempty  interior for each i = 1, ..., mh; 
(v) for each i = 1, ..., mh there is exactly one point x~ E int K~ N Y/; 

(vi) raN( int g ~  [7 ~)  = c~, i = 1, . . . ,mh (ran is the Lebesgue measure in 
g ) .  

The  space Yh is defined such tha t  it contains all restrictions to flo of piecewise 
constant  functions over T~, i.e., 

Vh : { f  : ( f l ,  . . . ,  fM) C L~176 M) : 3 / :  (/1, ..., ]M): nh ~ M, 

/J[int K~ is constant  i :  1,. . . ,mh, j : 1 , . . . , M , f  : fi]no}. 

We define in a similar way Xh a space of functions components  of which are 
piecewise continuous functions over the par t i t ion T~: 

Xh = { f  = ( f l ,  ..., fM) E L~176 M) : 3fi = ( f l ,  ..., ]M) : f~h ~ M, 

fJlint K~ is continuous i =  1,. . . ,mh, j = 1 , . . . , M , f =  fi]n0}- 

To define the  approximat ion  problem we have to define also a linear mapping  
Ph : Xh ~ Yh, the so called mass lumping operator:  

r n  h 

(Ph f ) ( x )  = ~ / ( 4 ) ( X i n t  Ki)(~), �9 e ~o, 
i = 1  

where Xin t K~ is the characteristic funct ion of int K~. The following consis- 

tency conditions between the spaces Vh and Yh are assumed: 

Vh ---" v in V as h ~ 0+ ~ there exists (11) 

a subsequence of {vh} such tha t  Ph, Vh, ~ v in ]/1 as h' ~ 0+; 

IIPhllL(v~,r~) <_ C~, (12) 
where C4 is a positive constant  independent  of h. For the problem (P2) we 
can define the par t i t ion T~ over Fo, the spaces Yh,Xh and the linear operator  
Ph in a similar way. 

It remains only to approximate  the bilinear form a and the linear form 
(g, ")v- This can be done by using the s tandard  approach,  i.e. using appro- 
priate numerical  integrat ion formulae (see [2]): Let ah : Vh • Vh ~ be an 
approximat ion  of a satisfying the following properties:  

3 ~  > 0 : lah(~h,~h)l < ~ll~hlIvIl~hNv Wh,~h C Yh, Vh C (0, 1); (13) 
3a > 0 : ah(vh, Vh) > allVh]] ~ YVh C Yh, Vh e (0, 1); (14) 

Uh -~ U, Vh ~ v in V as h ~ 0+, Uh,Vh E Vh ~ (15) 

ah(Uh, Vh) ---* a(u, v) and ah(Vh, Uh) ~ a(v, u) as h --* 0+ 
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and let gh E V~ be an approximation of g such that 

3f~ > 0 :  I(gh, vh)vhl <_ fl[IVh[]V VVh e Yh, Vh e (0,1); (16) 

Vh -~ v in V as h ~ 0+, Vh E Vh :. (17) 

(gh, Vh)Vh --~ (g, V)V as h -* 0+, 

where V~ is the dual space of Vh and (., ")vh the corresponding duality pair- 
ing. 

Using the defined notations we are now able to define fully discrete FEM-  
approximations of the problems (P1) and (P2) as follows: 

find uh E Kh and A'h(uh) E Yh such that 
ah(Uh, Vh -- Uh) q- ffl0 Xh" (PhVh -- P h U h ) d z  (P1)h 
> (gh, Vh--Uh)Vh VVh E Kh 
~nd & ( ~ )  e 0j((Phuh)(~)) a.e. in a0 

and 
find Uh E Kh and Xh(Uh) E Yh such that 
ah(uh, Vh -- Uh) + fro Xh" (PhVh -- PhUh) dx (P2)h 
>_ (gh, Vh -- Uh)Vh VVh C Kh 
and Xh(x) e Oj((Ph h)(x)) a.e. in r0. 

It is possible to show that firstly the discrete problems are solvable and 
secondly that the discrete problems are closed on subsequences to the con- 
tinuous ones, i.e. 

THEOREM 2. There exists at least one solution (uh, A'h(Uh)) of (P)h for 
all h e (0, 1) and we can find a subsequence of {(Uh, Xh(Uh))} such that 
Uh, converges strongly to u in V and Xh,(Uh, ) converges weakly to 2d in Y .  
Moreover, ( u , X )  is a solution of (P). 

For the proof of this theorem we refer to [12]. 

3. S u b s t a t i o n a r y  poin ts  of  t h e  c o r r e s p o n d i n g  n o n c o n v e x  e n e r g y  
functiOns 

Throughout this section we shall assume that the bilinear form a and its 
approximation ah, h E (0, 1), are symmetric. Let us define a function L 
from V to as follows: 

L(v) = 2a(v,  v) - (g, v )v  + J(v) ,  

where 

J ( v ) = / n 0 j ( v ( x ) ) d x  , ( o r J ( v ) = f r 0  

(18) 

j ( v (x ) )  dx), (19) 
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and its approximation Lh : Vh --* , h E (0, 1): 

1 
Lh(vh) =  ah(vh, vh) -- (gh, vh)V, + Jh(vh), (20) 

where Jh(Vh) = J(PhVh) for all Vh E Vh. Since the function j is locally 
Lipschitz continuous and it satisfies (4), it is easy to see that  J and Jh are 
also locally Lipschitz continuous, and consequently L and L h .  

The main aim in this section is to show that  all substat ionary points of 
L on K and Lh on Kh are solutions of (P) and (P)h, respectively. By a 
substat ionary point we shall mean the following: 

DEFINITION 1. Let f be a locally Lipschitz continuous function from a 
Banach space X to . A point x E X is called a substationary point of f iff 
0 E Of(x) + NK(x),  where Of(x)  is the generalized gradient of f at x and 
NK(X) the normal cone to K at x. 

In the sequel we shall consider only the case (P1), because (P2) can be 
t reated in a similar way. 

PI~OPOSITION 1. It holds that every substationary point of L is a solution 
o I (P1). 

PROOF:  Let u be a substat ionary point of L on K,  i.e. 

0 e OL(u) + Ng(u)  -= Au + OJ(u) - g + Ng(u),  (21) 

where A : Y --* V' is defined by (Av, w)v  = a(v,w) for all v ,w e V. 
The equality holds in (21) due to Corollary 1 of Proposition 2.3.3 in [3]. 
Therefore, there exist A' C OJ(u) and w E NK(u) such that  

O = A u + X - g + w .  (22) 

~From [i] we know that  X satisfies the relation 

X(x)  e Oj(u(x)) a.e. in ~0. (23) 

Using the definition of the normal cone, i.e. (w, v)v ~ 0 for all v E TK(U), 
TK(U) the tangent  cone of K at u, and the fact that  K is a convex set we 
have that  

( w , v -  u)v ~ 0 Vv E K. 

Substituting (23),(24) to (22) we obtain 

{ O = ( A u + , I f - g , v - u ) v + ( w , v - u ) v  
<_ (Au + X - g, v - u)v Vv C K 
and X(x)  E Oj(u(x)) a.e. ill nO, 

(24) 
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i.e. u solves (P1). Thus the proof is complete. [ ]  
Next we shall show that  the corresponding result holds also in the discrete 

case. First we shall express the problem (P1)h in a matr ix form (as the 
discretization parameter  is fixed, we shall skip it in many situations). Let 
{~J}~'=l be the basis of Vh. We shall make identifications Vh -- " and Yh =-- 

[M],~ where m is the number of the nodal points of the quadrature  formula 
(10). Moreover, we shall identify v = ~j~--1 vj~oJ E Vh with the nodal vector 

v = (v~)j= 1 E Let us define an m • n -mat r ix  7 ) = (P i j ) ,  Pi j  E M �9 , a s  

follows 

Pi j  = (Ph~J) (x l ) ,  i =  1 , . . . , m , j  = 1 , . . . , n ,  (25) 

where x *,i = 1, ..., m are the nodal point of (10). Let us use the following 
notations: K {v E '~ : v  E K h } ,  A (ah(~  ~, j "~ = = (P))i , j=l an n • n -ma t r ix  

j n n and g -- ((gh, ~ }Vh)j=l e �9 Then the problem (P1)h is equivalent to 

find u = (Ul, ..., un) e g and s = (sl ,  ...,s,~) e[M]m such that  
( v - - u ) T A u + ( 7 ) v - - 7 ) u ) T s _ > i  v - u ) r g  V v e K  
and si e ciOj((7~u)i)  i = 1, . . . ,m .  

PI~OPOSITION 2. I t  holds that every substat ionary  point  of  Lh is a solut ion 
of (P1)h. 
PI~OOF: The function J :'~ --*, J ( v )  = Jh(v )  for all v �9 Vh, can be writ ten 
as a composite function J o 7 ~, where 7 ~ is the m x n -mat r ix  defined by (25) 

and .] : [M]m ~ is a function defined by 

J(v) = ~ c~j(v0. (26) 
i----1 

The generalized directional derivative of J can be est imated as follows: 

J ~  l imsup J ( v § 2 4 7  (27) 
z--*O~t--~O+ 

= lira sup EF=~ ~j (v~  + -~ + ~w~) - E ~  c~j(v~ + ~) 
Z--~O,t--~OT 
?n 

< ~ ~ lira sup j(~ + ~ + ~w~) - j(v~ + ~) 

m 

i----1 

This implies that  the following holds: if s E 0 J ( v )  its components necessarily 
satisfy the relation 

si E c iOj (v i )  i =  1 , . . . , m .  (28 / 
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Furthermore,  applying Theorem 2.3.10 of [3] we get that  every element s I �9 
0 J ( w )  can be decomposed into the form 

s ' - -  7JTs, (29) 

where s �9 O.i(7)w). 
Let u be a substat ionary point of Lh on K. Using the same arguments 

as in the proof of Proposition 1 we get firstly that  

0 �9 A u  + 0 J ( u )  - g + NK(U), (30) 

and secondly that  there exists s I �9 0 J ( u )  such that  

( v - - u ) T A u + ( v - - u ) T s ' > _ ( v - - u ) T g  V v � 9  (31) 

Substituting (28) and (29) into (31) we get that  every substat ionary point 
of Lh is a solution of the following problem 

find u = (ul, . . . ,u,~) e K and s = (s l , . . . , sm) e [M]m such that  
(v -- u ) T A u  + (Wv -- 7)u)Ts >_ (v -- u)Tg V v e K  
and si �9 ciOj((7)u)i) i = 1, ..., m,  

which is nothing else that  (P1)h. Thus the proof of this proposition is 
complete. [ ]  

Combining Theorem 2 and Proposition 2 we see that  one possible way to 
numerically solve the problem (P) is to t ransform the discrete problem (P)h 
to the problem of finding a substat ionary point of the corresponding poten- 
tim function Lh, because it holds that  the substat ionary points of Lh tend 
to the solutions of (P) on subsequences. And now because local minima of 
a locally Lipschitz continuous functions are its substat ionary points, we can 
use nonsmooth optimization methods (see the next section) for finding some 
of the solutions of (P). On the other hand if we want to numerically solve the 
problem of finding a substat ionary point of the function L, which is more 
restricted than the problem (P), we cannot use exactly the same approach. 
This is because of the fact that  the limits (not even limits of subsequences) 
of the substat ionary points of Lh are not necessarily substat ionary points of 
the function L. The only thing what we can show is that  the global minima 
are preserved on subsequences as h tends to 0. That  is why one has to use 
global nonsmooth optimization methods for solving the substat ionary point 
problem of L. 

For the completeness let us prove the above mentioned result of the global 
minima. 

P t tOPOSITION 3. The global mimina  of  the funct ion Lh, h E (0, 1), con- 
verge strongly in V on subsequences to the global min ima of L. 
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Pt tOOF:  Using the well-known result of the calculus of variations that  a 
weakly lower semicontinuos and coercive function defined on a nonempty, 
closed, convex set of a reflexive Banach space has at least one minimum 
point, we obtain that  the functions L and Lh, h E (0, 1) have a minimum 
point. The coerciveness holds due to the sign condition (3), the coerciveness 
conditions of a,ah (6),(14) and the weak lower semicontinuity is satisfied 
because of the compact  imbeddings (1),(2), the weak lower semicontinuity 

1 
�9 ) , ~ a h ( ' ,  "). 

Let {Uh}, Uh C Vh be a sequence such that  Uh is a minimum point of Lh 
on Kh. Then 

lah(~h, lLh) - -  (gh, Uh>Vn + J(PhUh) (32) 

< 2 h(Vh, vh) - <gh,  h>Vh + J(Ph h) Wh Zh. 

/.From Theorem 2 and Proposit ion 2 it follows that  we have a subsequence 
{Uh,} which converges strongly to some element u E K in V. Passing again 
to a subsequence if necessary we also have that  {Ph, Uh,} converges strongly 
to u in Y due to (11). Now it is easy to show that  u is a minimum point of 
L on K.  Indeed: Let v E K be given. Because of (7) there exists a sequence 
{Vh}, Vh E Kh such that  Vh --* v in V. Letting h --* 0+ in (32) we get that  

1 
~a(~,,u) - <g,~,>v + J(~,) (33) 

<_ 2a(v, v) - <g, v>v + J(v) Vv C K, 

i.e. u is a global minumum point of L on K. [] 

4. P r o x i m a l  b u n d l e  m e t h o d  for  n o n s m o o t h  n o n e o n v e x  
o p t i m i z a t i o n  

In this section we concentrate on the question how to generate substat ionary 
points of the locally Lipschitz continuous function f from ~ to on the subset 
K C  '~ 

PI%OPOSITION 4. It holds that every local minimizer is a substationary 
point of f on K. 

For the proof  we refer to [3]. 
Due to the Proposit ion 4 we consider the following nonsmooth,  nonconvex 

and constrained optimization problem 

minimize f ( x )  
subject  to x E K. 

(GP) 
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In what  follows our feasible set K has a more specific s t ructure,  i.e. 

K = {x �9 ~ Ig (x )  = max  gi(x) <_ o), 
i=l,...,rn 

where each gi f rom '~ to is a locally Lipschitz continuous function. We 
suppose tha t  at each x �9 '~ we can evaluate the function values f (x) ,  g(z) 
and arbi t rary subgradients  ~I �9 Of(x), ~g �9 Og(x). 

The nonsmoo th  opt imizat ion methods  for solving (GP)  can be divided 
into two main  classes: (Kiev) subgradient  methods  and bundle methods .  
The  principle behind subgradient  methods  is to generalize smooth  gradient 
or quasi-Newton methods  by replacing the gradient by an arbi t rary subgra- 
dient. This simple idea leads, however, to difficulties with a priori choice 
of the step size in line search operat ion and the lack of an implementable  
s topping criterion. 

In this paper  we construct  a bundle me thod  for the problem (GP).  It is a 
generalization of the me thod  in t roduced in [9] to the nonconvex constrained 
case, and is based on the me thod  derived in [15]. For fur ther  s tudy  of bundle 
methods  we refer to [16] and [17]. 

4.1. D I R E C T I O N  FINDING 

The  idea of our me thod  is to form a simpler approximat ion for the problem 
(GP).  Suppose tha t  the s tar t ing point xl is feasible and at the k-th i terat ion 
of the a lgori thm we have the current i terat ion point xk �9 '~, some auxiliary 
points yj �9 n previous i terations and corresponding subgradients ~ �9 Of(yj) 
for j �9 J~ and ~ �9 Og(yj) for j G J~, where the index sets J~, J~ C 
{ 1 , . . . ,  k)  are assumed to be nonempty.  We define the linearizations at x �9 n 
by 

f j (x)  = f(y~) + ((f)T(~e -- yj) for all j �9 J )  and (34) 

o;(x) = g(yj) + (~ f )r (x  - yj) for all j �9 J) .  (35) 

Note tha t  we do not  need to store the auxiliary points yj, since by denoting 
k = O~(xk) the we obtain the following recursive upda t ing  f~ = .~(x/~) and gj 

formula 

f ) + l  : f~ + ( ~ j ) ~ ( ~ + l  _ xk) for a~ j �9 J~ and (361 
gk+l  k j -- gj + (~fl~(x~+~ - xk) for ~U 5 �9 J~. (37) 

Fur thermore ,  for all x E '~ we define the polyhedral  approximat ions  by 

fk (x )  = m a x { ~ ( x )  l j �9 J~} (38) 

~k(~) = m a x I g j ( ~ ) l j  �9 J~} and (39) 

~rk(x) = m a x { / ~ ( x )  - f (xk) ,  ~ ( x ) } ,  (40) 
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which all are convex functions. 
As in the classical cutting plane method [7] we replace the original objec- 

tive and constraint functions by their polyhedral approximations. By using 
the function Hk we get over the constraints. In order to avoid the poor con- 
vergence rate of the cutting plane method, we add to the objective function a 

1 2 regularizing quadratic penalty term 7][dll . To improve further the method 
we exploit the proximal bundle idea due to [9] and [23], and we multiply 
this penalty term by a weight uk > 0 to obtain the following unconstrained 
cutting plane approximation of (GP) 

minimize / lk(x k + d) + -~[Id[[ 2 
(CP) 

subject to d E n 

Due to the nonconvexity we define the distance measure by 

k - 1  
k ~j = II~J- yJll + ~ I1~+~ - ~11 for j = 1 , . . . , k -  1, (41) 

i - - j  

and the subgradient locality measures by 

Z L  = max { I f ( ~ ) -  f~l, ~S(~)  ~) for a~ j C J~, (43) 

/3~,j = max {Ig~l, 7g(s~) 2} for all j E J~, (44) 

where 7I -> 0 and 7g -> 0 are the distance measure parameters (7I = 0 if f 
is convex and 7g = 0 if g is convex). 

Note that the problem (CP) still is a nonsmooth (piecewise linear) opti- 
mization problem. However, due to special minmax-structure, it can be 
rewritten as 

{minimize ~ ~l ldl l  2 
subject to - k + ( ~ ) r  d<_v forall  j E  jk  
and 13g,j + (~)Td <_ v for all j E J ! ,  

(BP) 

which is a quadratic (smooth) problem. In convex case (Vf = Vg = 0) the 
problems (CP) and (BP) are equivalent. For computational reasons it is 
more effective to solve the dual problem of (BP), i.e. we find multipliers A~ 

k for j E J~ that solve the problem for j E J~ and #j 

minimize 

subject to 

a n d  

+ zj  .. ll 
+ Ejes~ ~j~,j + EjeJ~ m~,j  
Ejej~ ~j + EjeJg m = 1 
;~j, ~j, > 0. 

(DP) 
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THEOREM 3. Problems (BP) and (DP) are equivalent, and they have unique 
solutions ( dk, vk ) and k k ()~j, ttj ), respectively, such that 

r:4, 
uk ~'s~j s~.l~ 

vk -~klldkJl 2 ~ k k k k = - ~ , : j  ~ (46) - ~ , jZj.  

se~ seJ~ 

For the proof of the above theorem we refer to [15]. 

4.2. SUBGRADIENT AGGREGATION 

We note that the larger the index set J )  and J~ are the more accurate 

the polyhedral approximation _0 k is. Thus the simplest strategy is to choose 
j )  = jk  = {1, . . . ,  k}. However, in practice this choise presents serious prob- 
lems with storage and computation time after a large number of iterations. 

Next we shall present the subgradient aggregation strategy (cf. [8]) for 
keeping the dimension of the problem (DP) bounded. Let ~ for j E J )  and 
#~ for j E J~ be the Lagrange multipliers of the problem (SP) at iteration 

k We define the scaled k and denote :k} = ~_,iEj~/~k and #~ = ~ j c V / z j .  

multipliers for all j E J~ and j �9 J~ by 

k k / k k k 5,~ = )~J/)V' if)~} > 0 and -k # j /#g ,  if #g > 0 
1/IJ)l  , if A} = 0 # i  = 1/IJ~l, if #z k = 0 

and the aggregate subgradients by 

k -k - k f (p:,f;)= ~ aj(~J,f;) 
ieJ~, 

and k ~k -k g % , g . )  ~ g))- = , s  (~s, 
jes~ 

Our aim is to add into the problem (BP) the aggregate constraints 

_f?k s,p + (p}) rd < v and (47) 

-k (48) -Zg,p + (p~)rd < v, 

where /~k -k { 1.0pkl, ~k2 i,p -=- max {lf(zk)- f~], 7.:(.~}) 2} and flg,p = max fig(.) }, 
I = O) and the aggregate distance measures are defined by (s} = sg 

-k k -k k -k ~ -k k -k k (49) ~} = }2je:~, ),jsj + ,Xps: % = ~js  s + ~i, sg 
je J~ 

,}+1 = ~} + Ilxk+l - xkll o~~ = s,-k + II~k+l - =kll. (5o) 
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However there is one drawback: at the beginning of iteration k the vectors p~ 
and p~ are still unknown. This can be avoided by employirtg the information 
of the previous iteration as follows. Due to formulas (36) and (37) we define 

fpk+l 7k = f ;  + (p})T(x~+i -- x~) and (51) 

gkp+ l = ~kp Jr- (pkg )T ( ~k+ l -- :r,k ). (52) 

At the first iteration let Xl E K be a feasible starting point supplied by 
the user, then we initialize our algorithm by Yi = Xl, pOy = ~ e Of(yi) ,  
~o = ~; e 0~ (~ i ) ,  f~ = f :  = f ( ~ l ) ,  ~1 = ~1 ~ = ~ ( ~ )  and Z} = J~ = { 1 }  

At iteration k we replace the unknown vectors fp~, gi;, ~~ P} and pa ~ by the 
k-i  respectively, and define previously generated fpk g k p~-i and P a , 

/~,p = max {[f(m~)- f~[, 7f(s}) 2} and 

Z~,~ = m a ~  <1~1, ~ ( ~ ) ~ ) .  (Sa) 

This leads to the following aggregate modification of (BP) 

minimize v + ~l ld l l  ~ 
subject to - f l ~ , 3 + ( d ) T d < v  for all j E  J~ 

k ~-I T - - <  - f ly ,p+(py ) d _ v  (ABP) 
-Z~,~ + (~;)~ < ~ for all ~ e ~ 

~ - ~  < and - f l z ,p+(pz  ) d _ v  

and via d u ~ a t i o n  we find multipners ~, ,~, ~ for ~ e ~ and ,~ for 
j E J~ that solve the problem 

minimize 

subject to 

and 

2-~ II Ej~J~ ~Kf + ~p~-X + Ej~j3 ~j~ + ~p~-~ll 2 

E ~  ~ + ~p + E ~  ~ + ~p = i 
Xj, Ap,#3,pp >_ 0. 

(ADP) 
Suppose now that (:~, k k #p,)~j,/~) is the solution of the problem (ADP). 

k k k Then we can similarly denote ~ = ~pk + ~ j~ j~  )~ and #g = #~; + ~ jcJ~  #~ 

and define the scaled multipliers for all j E J~ and j E J~ by 

k k / k k 

~J= 1/(1@+1), if~}=o ~P= 1/(tJ~l+l), 
and 

_~ i~j/t~g, if/zg > 0 ~k 
#J = 1 / ( I J ~ I + l ) ,  i f # ~ = 0  # P =  1 / ( I J ~ l + l ) ,  

i f~} > o 
if >,} = 0 

if ~ > o 
if/~ -- 0 
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and the aggregate subgradients by 

k "k - k f (ps, f ; )  = ~ + Ap(p] ,f•) and (54) 

= , j ( ~ , g ~ )  + ,p(p~  ,gp). (55) 
3Ez~ 

Finally we denote by 

Pk E k f --k k -1  k g k k -1  = ~J~J+%Ps + ~  + #J~~ #pPz and (56) 
j~J~ J~J~ 

~ ~ -~ ~ "~ (57) = ~fflI,p + t%f~g,p. 
THEOI~EM 4. Problems (ABP) and (ADP) are equivalent, and they have 
unique solut ions (dk, vi:) and k t: k k ( )~p , #p , respectively, that ~j ,  ~ j ) ,  such 

1 
dk = - - - p ~ ,  (58) uk 

vk = -uklldkll ~ - ~ .  (59) 

For the proof we refer to [15]. 
In theory this aggregation strategy allows us to choose the index sets J~ 

and J~ quite freely. In practice this choice still has a strong effect on the 
trade-off between efficiency and amount  of work per iteration. To strike a 
balance we use a user-supplied bound Mg _> 2 on the number of indices. 

4.3. LINE SEARCH 

Due to the trust  region idea the proximal bundle type methods in convex 
case do not require any uncertain and lot of function evaluation demanding 
line search operation. In nonconvex case we cannot avoid line search in order 
to guarantee the convergence. 

We assume tha t  m L e  (0, 1), m R  6 (mL, 1) and { 6 (0,1] are fixed line 
search parameters.  First we shall search for the largest number tk 6 [0, 1] 
such tha t  

(a) f(x~ + t~dk) < f(xk) + mLtkvk, 

(b)  g ( z k  + t~d~) < 0, 

(r t~ _> ~. 

If such a parameter  exists we take a long serious step: xk+l = xk + t~dk 
and Yk+l = Xk+l. Otherwise, if requirements (a) and (b) hold but 0 < t~ < 
then we take a short serious step: xk+l -- xk + t~dk and Yk+l = xk -[- t~dk ,  
and if t~ = 0 we take a null step: xk+ 1 ~-- X k and Yk+l = xk ~- tkRdk, where 
t~ > t~ is such tha t  



416 M. MIETTINEN, M.M. MKEL, J. HASLINGER 

_ilk-I-1 f T (d)  ],~+~ -5 (~+~) dk > mRvk.  

In long serious steps there occurs a significant decrease in the value of the 
objective function. Thus  there is no need for detecting discontinuities in the 
gradient of f ,  and so we set ~k]+l �9 Of(xk+l).  In short serious steps and null 
steps there exists discontinuity in the gradient of f .  Then the requirement  (d) 
ensures tha t  xk and Yk+l lie on the opposite sides of this discontinuity and 

/ OS(y~+~) will force a remarkable modification the new subgradient  ~k+l �9 
of the next search direction finding problem. In what  follows we are using 
the line search algori thm presented in in [15], which finds step sizes t~ and 
t~ such tha t  requirements  (a)- (d)  hold. 

4.4. WEIGHT UPDATING 

The last but  not least impor tan t  open question is the choice of the weight 
uk. The  simplest s t ra tegy might  be to keep it fixed uk - uIi~. This, however, 
leads to several difficulties. Due to Theorem 4. we observe the following: 

(1) If uyix is very large, we shall have small I~kl and Ildkll, almost all steps 
are serious and we have slow descent. 

(ii) If ufi~ is very small, we shall have large I~kl and Ildkll, and each serious 
step will be followed by many  null steps. 

Therefore, we keep uk as a variable and upda te  it when necessary. In this 
we use the safeguarded quadrat ic  interpolat ion technique due to [9]. 

4.5. PROXIMAL BUNDLE ALGORITHM 

Step 0: (Initialization) Select a s tar t ing point xl E K,  a final accuracy tol- 
erance ts  > 0, the max imum number  of stored subgradients M j  > 2, 
an initial weight ul  > 0 and line search parameters  m L E  (0,�89 
mR E (mL, 1) and t �9 (0, 1]. Choose the distance measure parameters  
7f > 0 and 7g > 0 (72 = 0 if f is convex; 7g = 0 if g is convex). Set the 
i terat ion counter  k = 1 and initialize the following variables: Yl = z l ,  

o = ~ �9 Og(yl), .f~ = f• -- f (y l ) ,  g~ -- g~ -- g(yl) ,  p~ = ~I �9 of (y1) ,  pg 
1 = ~1 = o and Z} = J~ = {1) .  ,~} : 8g 

k Step I: ( Di~ectio~ ~ n d ~ ) .  Find multipliers ~, ~, ~ for j �9 J~ and ~j 
for j �9 Ja k by solving the problem (ADP).  Calculate multipliers ~ } , / ~ ,  

X~, ,p,-~ ~j-~ and , ,  -~ for 5 �9 J~ and j �9 J# and set 

(p} , /~ ,~k)  -k f + "~pkP2 , f ; , s f ) ,  (60) 

jeJ~ 
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k ~k ~kt  k - 1  k k #j(~j,gj,s~) + #~(pg ,gp,Sg), (61) 
je;~ 

k k k k (62) 
Pk = Ifpf + #ppg, 

~,, = max {If(~k)- f~l, ~s(~})~}, (6Z) 
,~gkp max {l~pkl, -k2 = ,y,,(~) }, (64) 

~ k -~ ~ "~ (6a) = ~SflS,p + I%flg,v" 

Set dk = - ~ P k .  

Step 2: (Stopping criterion). Set 

1 
~ = ~llp~ll ~ + ~ .  

If wk _< r then STOP. 

Step 3: (Line search). Find step sizes t~ e [0,1] and t~ e ItS, 1] by the line 
search algorithm of [15]. Set Xk+l = xk + tkLdk and Yk+l = xk + t~dk. 

Step ~: ( Linearization updating). Calculate the ]inearization values 

s~ +~ = s~ + t~(~f) ~d~, for 3 ~ J~, (66) 

g~+l = g~ + t~(~)Tdk,  for j E J~, (67) 

sk+l k j = s j  + t~lld~ll, for j e s~ u a 2, (6s) 
spk+l ~k k k T = f;  + tL(ps) d~, (69) 
f f~+l  : ~ ~_ t~(pkB)Tdk ' (70) 

s~ +1 = a} + t~lldkll, (71) 

~k+l -~ + t~lld~ll. (72) g ~ Sg 

Evaluate ~k]+l �9 Of(Yk+l) and ~+1 �9 Og(yk+l) and set 

k + l  = f(Yk+l) + (t~ - t k ~tt] ~T d (73) +1 R)kgk+l} k, 

gk+l - R)((k+l) dk, (74) k + l  = g(Yk+l) "J- (t~ t k g T 

~k+l = (t~ - %)lld~ll. (75) k+ l  

Step 5: ( Weight updating). Select uk+l by the weight updating algorithm of 
N. 

Step 6: (Updating). Set j~+l = j~ U {k + 1} and jk+l  = j k U {k + 1}. If 

I J ~ + l [  > M j ,  then J~+~ = J)+~ \ {mid j ] j  ~ j~+l}. If IJ~+ll > Mj,  
then jk+l  = jk+l  \ {rain j lJ  ~ Jk+l} �9 Increase k by 1 and go to Step 
1. 
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If we assume that  f is weakly semismooth, i.e. the directional derivative 
f ' (x;d) exists for all x and d, and if(x; d) = limtto(~/)Td, where ~1 �9 
Of(z + td), then the convergence of the above algorithm can proved in the 
same way as in [8]. 

5. N u m e r i c a l  r e s u l t s  

In this section we shall present one example of hemivariational inequalities 
in nonsmooth mechanics of solids, namely a nonmonotone contact problem. 
Its approximation and numerical realization will be based on the methods 
presented in the previous sections. 

Let us s tudy a two-dimensionM undeformed elastic body  represented by 
a bounded domain f / C  2 and let F be the boundary  of ~. We shall assume 
that  the body  is subjected to internal and external forces which cause the 

2 deformation of the body. We denote by n = (ni)i=l the outward unit normal 
2 ~ 2 vector to F, ~ = (alj)i,j=l the stress tensor, e = ( ij)i,j=l the strain tensor, 

~ 2 S = (Si aijnj)2=l the boundary  force and u = ( i)i=l the displacement. 
The boundary  r is divided into three nonoverlapping open sets F1, F2 and 
F3 such that  r = F1 u F2 u F3. Let us suppose that  the domain ~t is as in 
Fig. 1, i.e. 

~'~ ---- { ( ~ l , ~ g 2 )  e 2 : :~1 �9 (a,b) a n d  :~2 �9 ( o t ( X l ) , " / ) } ,  (76) 

where a, b,7 are positive constants and a E Cl ' l ( [a ,  b]), a > 0. We assume 
that  on F1 the displacements are given by 

= o n  ( 7 7 )  

For simplicity, we consider the homogenous boundary  value U = 0 on F1. 
On the other hand on I'2 the boundary  forces are given by 

S i x  ) ---- g l ( x )  o n  r2. ( 7 8 )  

Furthermore,  we assume that  F3, which is a graph of the function cz, i.e. 
r3 = { ( ~ 1 , ~ 2 )  e 2 : ~1 e (a,b)  and ~2 = ~(~1)),  can be in contact with a 

T ! " $ 

n r2 

i t 

Fig. 1. Contac t  problems of a l inear elastic body  
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nonmono tone  frictionless foundat ion.  Thus the body obeys on F3 the fol- 
lowing system of boundary  conditions: 

-S2(x~)  �9 0j(u~.(x~, a(x~)) + a(x~)) a.e. x �9 (a,b) (79) 

S l ( x l , a ( x l ) )  = 0 a.e. x �9 (a, b), 

where j is a locally Lipschitz continuous function from to satisfying (3) 
and (4) (see in Fig. 2a the generalized gradient of j ) .  We shall also consid- 
er a contact  problem with a rigid foundat ion  and a nonmono tone  layer of 
thickness d above it (see Fig. 1). Now the conditions (79) are replaced by 
(see Fig. 2b) 

-S~(~1) �9 Oj(u~(xl,a(~l)) + a (~) )  

U2(Xl,Ot(;Cl)) _> - - a ( X l ) -  d 

s ~ ( ~ , ~ ( ~ ) )  = 0 

a.e. x �9 (a,b) 

a.e. x �9 (a, b) 

a.e. x �9 (a, b). 

(80) 

We assume tha t  the linearized strain tensor e obeys the Hooke's law of the 
form 

!(0~ 0~,~ (81) r ---- C i j k l ek l (U) ,  where ekl(u) = 2 '  Oxl + OXk j 

and the elasticity coefficients cqkl satisfy the  usual symmet ry  and elasticity 
conditions in ~2. Then  the equilibrium state of ~ is described by means of 
the following system: 

~j,j+g~=0 inn, i=1,2,  (s2) 
where g2 is a body force. We shall assume tha t  g2 = 0. The  weak formulat ion 
of the contact  problem in the case of (79) reads as follows: 

find u e V and X(u)  e La(F3) such tha t  
= (g ,v)0,r~ w e v (P) a(u, v) + fr'3 X(x)v2(x)  ds 1 

and W(x) �9 Oj(u2(xl, a(xl)) + a(xl)) a.e. xl �9 (a, b), 
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where V is the space of admissable displacements defined by 

V = {v = (v~,v2) �9 (Hl(f l ) )2  : v~ = 0 on 21, i =  1,2}, (83) 

a is the bilinear form from V • V to defined by a(u, v) = fo cijklskt(u) 
eij(v)d~, for all u ,v  �9 V and (', ')0,r2 is the (L2(F2))2-norm. In the case of 
the rigid foundation with a nonmonotone layer, i.e. (80) the weak form is 
the following: 

find u �9 K and X(u)  �9 L2(r3) such that  
a(u, v -  u ) +  fr~ X(x)(v2(z.)  - u2(x) )ds  >_ (gl, v -  u)0,r2 Vv �9 K 
and X(z )  �9 Oj(u2(x l ,a (x l ) )  + a (x l ) )  a.e. xl  �9 (a,b), 

(cP)  

where K is a nonempty, closed, convex constraint set defined by 

K = {v �9 V :  v2(Xl, ot(xl)) ~ - -O~(Xl )  --  d a.e. in (a,b)}. (84) 

Let us consider the approximation of the problems (P) and (CP) (since 
h is fixed we shall skip it in many places). First we define ~'~h a polygonal 
approximation of fL Let a _-- a0 < al < ... < am ~ b be a parti t ion of 
[a, b] and ah be a piecewise linear function such that  ah(ai) = a(ai) for all 
i = 0, 1, ..., m. Then we set that  

nh = {(~1,~2) �9 ~ : ~1 �9 (a,~)and ~ �9 (~h(~ ) ,~ ) ) ;  (82) 
r3h = { (~ ,  ~ )  � 9  : .~ �9 (a,b) and x2 = ah(Xl)}. (86) 

For Vh we choose the space of piecewise linear functions over a regular tri- 
angulation Th of ~h  such that  the whole segment {(xl,  x2) : xl  �9 [ai-1, ai] 
and x2 = a h ( ~ ) }  is the whole side of some triangle T �9 Th 

Vh = {v �9 (C(~h))  2 : ViT �9 (PI(T))  2 VT �9 Th, v = 0 on F1}. (87) 

Let {~J}~'=~ be the Courant basis functions of Vh. The approximation of the 
constraint set K is defined by 

K h  : {v  �9 Yh : v2(ai ,  Oth(al)) >_ --Oth(ai) -- d for all i = 1, ..., m}. (88) 

For approximating the integral fr3h X(~)v2(~) ds we use the following numer- 
ical integration formula 

rn--1 

f~ f(~:)d~.~ ~ I(,~.,~h(,~))(,~+l,o~(a~+~))l (80) 
~h i = 0  

l ( f (ai ,  Cth(ai)) -q- f (ai+l ,  ah(ai+l))), 

where I(ai, Oth(ai))(ai+l,ah(ai+l))l is the length of the line segment from 
(ai, Cth(al)) to (ar ah(ai+l)). It is easy to see that  this formula is related 
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to the well-known trapezoidal rule. Thus the nodal points and the weights 
of (I0) are 

x ~ = (a~,~h(a~))  i =  1 , . . . ,m;  (90) 
1 

c~ = ~ ( l ( a ~ - l , ~ h ( ~ - l ) ) ( a ~ , ~ h ( ~ ) ) l  (91) 

+l(,~,o~,~(a~))(,~+x,~h(,~+~))l) i =  i,...,,~- 1; 
1 

~,~ -- ~l(a,~- i ,  o,n(a~-~))(~,~,,.,(a.,,))l. 

In order to write the discrete problems in the matr ix  form we need to define 
an m x n matr ix  7 ~ corresponding to the linear mapping Ph introduced in 
Section 2. Indeed: due to the choice of the formula (89) it reads as follows: 

( ~ v ) i  = { vj, if vj corresponds to the vertical displacement (92) 
of the nodal point (a{, ah(ai)) E F3h 

Then, the approximation problem (P)h is defined by 

find u E '~ and s E m such that  
vTAu-{-(PV)TS = v T g  VV E n 

and si E ciOj((~Pu)i + ah(ai)) i = 1, . . . ,m, 
(P)h 

and, consequently, (CP)h 

find u E K and s E m such that  
(v - u ) T A u  + (7~v - 7~u)Ts _> (v -- u)Tg Vv e K 
and ~ e c~a j ( (~u)~  + ~h(a~)) i = 1, ..., m,  

(CP)h 

where the n • n-matr ix  A,  the " -vec tor  g and the constraint set K is defined 
as in Section 3. 

In the numerical realization we transform first (P)h and (CP)h to the 
problems of minimizing the corresponding potential function, i.e. 

arg m i n v e . L ( v  ) or arg minveKL(V),  (93) 

where L : "  ̀--* is defined by 

L(v)  -: l v T A v  -- vTg + J ( v ) ,  
m 

J ( v )  -- ~ cij((7)v)i). (94) 
i=l 

Then we make use of the fact that  the nonlinear behaviour of the contact 
problem is prescribed only in the nodes of r3h: We list the components of u 
representing the nodal displacement on r3h first. Then we can decompose u 
as follows: u -- (u l ,  u2). We eliminate u2 from (P)h,(CP)h and, consequently, 
from L. Thus the size of our problem, i.e. the number of the unknowns is 
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Fig. 3. Solution 1 

Fig. 4. Solution 2 
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V 

reduced from 2m(m + 1) to 2m (the number of the subintervals in x -  and 
y-directions is m).  

In the numerical calculations we used the plane stress model and the 
following values: a = 0, b = 7 = 1, a (Zl )  -- 0.25 + ~1(~1 - 1), d = 0.04, 
c -- 5 and gl _ -0 .15 .  We solved the both  problems (P)h and (CP)h using 
m = 10, 20, 40, 60 (see Fig. 3 and Fig. 4 for the solutions with m = 20). Fig. 
5 show the displacements of the nodal points on rsh of the solution of (P)h 
(solution 1) and the solution of (CP)h (solution 2). We can see that  some of 
those nodal points of the both  solutions are on the branches AB and CD of 
Fig. 2 a),b) implying that  the nonmonotone contact law really affects. The 
flat part  of the solution 2 in Fig. 5 points out that  some of the nodes on r3h 
are contact with the rigid foundation (the branch DE of Fig. 2b) affects). 
Therefore the displacements of the solution 2 were smaller. Tables I and 
II show (L2(F3h))2-error, the needed CPU-t ime in seconds, the iterations 
number and the value of the minimized function L. The results showed 
very good convergence in (L2(r3h))2-norm (as an exact solution is used the 
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Fig. 5. Displacements of solutions 1 and 2 on r3u 

TABLE I. Solution 1 

m (L2 (r,u))2-error CPU/sec iterations value of L 

10 7.7e-3 2.7 44 -4.71e-3 
20 4.1e-3 6.8 61 -4.84e-3 
40 6.5e-4 46 114 -4.93e-3 
60 * 480 146 -4.96e-3 

solut ion ob t a ine d  wi th  m = 60). T h e  main  d rawback  was t h a t  the  CPU-  
t ime  increased qui te  rap id ly  when  the  n u m b e r  of  the  unknowns  incresed,  
a l t hough  the  i t e r a t ion  number s  behaved  qui te  reasonable .  This  suggests t h a t  
the  i m p l e m e n t a t i o n  of  the  n o n s m o o t h  opt imizer  which takes in to  account  
the  special s t r u c t u r e  of  the  considered p rob lem m a y  improve  the  efficiency 
of  our  numer ica l  approach .  If  we compare  the  resul ts  w i thou t  e l iminat ion  
(as rn = 20 the  i t e r a t ion  n u m b e r  was 600 and  C P U - t i m e  380 sec) we see 
t h a t  our  e l iminat ion  s t ragegy  was just if ied.  Final ly  we would like to  r emind  
t h a t  these  numer ica l  resul ts  have po in ted  out  t h a t  the  used n o n s m o o t h ,  
nonc onve x  op t imizer  is ve ry  effective and  reliable when  the  n u m b e r  of  the  
unknowns  is hundreds  ( the  t o t a l  n u m b e r  w i tho u t  e l iminat ion  was t housands )  
and  it can also hand le  p rob lems  wi th  few thousands  unknowns .  
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