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Abstract. In this paper we consider numerical solution of hemivariational inequalities
(HVI) by using nonsmooth, nonconvex optimization methods. First we introduce a finite
element approximation of (HVI) and show that it can be transformed to a problem of
finding a substationary point of the corresponding potential function. Then we introduce
a proximal budle method for nonsmooth nonconvex and constrained optimization. Numer-
ical results of a nonmonotone contact problem obtained by the developed methods are also
presented.
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1. Introduction

Hemivariational inequalities, generalizations of variational inequalities, were
presented by Panagiotopoulos [20]-[22]. Their origin is in nonsmooth mechan-
ics of solid, especially in nonmonotone contact problems. We refer the reader
to [18],[22] and references therein for the mathematical theory and the appli-
cations of them.

In this paper we present a fully discrete approximation model of (HVI)
based on the finite element technique and show that it can be numerically
realized by using nonsmooth, nonconvex optimization method. This model
was introduced first for scalar-valued (HVI) in [10],{11],]13],[14] and then
it was extended for vector-valued {(HVI) in [12]. It is applicable for the
unconstrained (HVI) problems and the constrained ones with a nonemp-
ty, closed, convex constraint set. Furthermore, it can also used for the
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so-called variational-hemivariational inequalitites to which class the con-
strained (HVI) problems belong as special cases (see [13]). In the case of
variational inequalities it can be shown that our approximation is equiva-
lent to the classical one presented in [4],[5]. The common property of the
(HVI) problems, to which we have applied our approximation, is that the
nonsmooth, nonmonotone behaviour of the problem is concentrated on the
lower order terms, i.e. on the terms which do not contain the highest order
derivatives. This is because the main tool, which is used for showing the con-
vergence of the nonsmooth, nonmonotone terms in our approximation as the
discretization parameter (which is in the finite element technique the size of
the mesh of the partitions) tends to zero, is that the generalized directional
derivative is upper semicontinuous (see [3]). And this approach cannot use
for the terms which contain the highest order derivatives which converge
only weakly in the considered function spaces. This is the main drawback
and restriction which we have in the approximation theory of the (HVI)
problems (and also in the general theory of (HVI)) compared to the corre-
sponding one of variational inequalities in which one can exploit effectively
the monotone nature, and consequently the convex nature of the problems.

The outline of this paper is as follows. In the second section we formulate
the considered vector-valued (HVI) which can also have constraints. For sim-
plicity we have restricted ourselves to the case having a polynomial growth
condition for the nonsmooth, nonmonotone term. For more general cases
we refer to [18],[19]. Then we present a fully discrete FEM-approximation
for it. It can be shown that the solutions of the discrete problems converge
strongly on subsequences to the solutions of the continuous one (see the
proof in [12]). In the third section we study the substationary points of the
corresponding nonconvex potential functions of the continuous and discrete
(HVI) problems. By a substationary point we mean that 0 belongs to the
sum of the generalized gradient of the potential function and the normal cone
of the constraint set. We show that the substationary points of the potential
functions are also the solutions of the (HVI) problems and this holds for
the both problems, the continuous and discrete ones. This is gives us the
theoretical basis to numerically solve the discrete (HVI) problem by trans-
forming it to a problem of finding of a substationary point of the nonconvex
locally Lipschitz continuous function. Finally we consider the question if
the substationary points are preserved as the discretization parameter tends
to zero: we can only show that the global minima are preserved. The sub-
section 4 is devoted to the question how to generate substationary points
of the locally Lipschitz continuous function. We introduce a proximal bun-
dle method for nonsmooth nonconvex and constrained optimization. Our
method is a generalization of the proximal bundle method by [9] to the
nonconvex constrained case. It is based on the method derived in [15] and
it has also close relationship with the bundle trust method of [23). In the



HEMIVARIATIONAL INEQUALITITES AND NONSMOOTH OPTIMIZATION 403

last section we study in detail an example of (HVI), namely a linear elastic
contact problem with a nonmonotone frictionless foundation or with a rigid
frictionless foundation and a nonmonotone layer above it. They can be for-
mulated matematically as a unconstrained (HVI) problem or a constrained
(HVI) problem, respectively. We apply our approximation model to them
and solve the discrete problems numerically by transforming them to nons-
mooth minimization problems and using then the proximal bundle method
introduced in the fourth section. For the other numerical methods which can
be applied to the presented discrete (HVI) problems we refer to [22].

2. Hemivariational inequalities and their finite element
approximation

2.1. FORMULATION OF THE CONTINUOUS PROBLEM

Let V be a real Hilbert space and  C ¥ be a bounded domain with Lipschitz
boundary T'. We shall denote by || - || the norm of V, V' the dual space of
V and (-, )v the corresponding duality pairing. It will be supposed that

V is compactly imbedded in LZ(QO;M), QTN (1)
or

V is compactly imbedded in L*(T; M), ToCT. (2)

We shall also have a nonempty, closed, convex subset K of V. Let j be a
locally Lipschitz continuous function from ™ to satisfying firstly the general-
1zed sign condition which is expressed by means of the generalized directional
derivative (see [3])

7°(&—€) < C1+ CalE| VE€M, (3)
and secondly the growth condition expressed by means of the generalized
gradient of 5 (see [3])

n € 85(£) = Il < Ca(1+[¢]), (4)

where C1, C3; and C3 are positive constants independent of ¢ and 7. Let
a:V XV — be abilinear form satisfying the continuity and the coerciveness
conditions (a,m positive constants):

|a(v, w)| < m|v||v]lwlly  Vv,w e V; (5)
a(v,v) > a|jv||% Yv eV, (6)
and g be an element of V/. By a hemivariational inequality we mean the

following problem (if (1) holds):

find u € K and X(u) € L?(Q0; M) such that
a(u,v—u)+ Jo, X -(v—u)dz > (g,v—u)yy YwekK (P1)
and X(z) € 9j(u(z)) a.e.in Qo
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or (if (2) holds)

find u € K and X(u) € L?(To;™) such that
a(u,v—u)+ Jp, X - (v—u)dz > (g,v—u)y YvEK (P2)
and X(z) € 97(u(z)) a.e.in Iy.
In the sequel we shall use the symbol (P) if we mean the both problems (P1)
and (P2) (we shall use this convention also in other notations).

THEOREM 1. There ezists at least one solution of the problem (P).

For the proof of the above theorem we refer to [18],[19].

2.2. FORMULATION OF THE DISCRETE PROBLEM

The approximation of the problem (P) is constructed by using the finite
element technique. Let A € (0,1) be a discretization parameter which is
related to the mesh size of the partitions used for the constructions of FEM-
spaces. First we introduce finite-dimensional approximations V; and Y} of
the spaces V and Y3 = L?(Qo; ™) (or Yz = L?(To;M)). In order to construct
Vi we can use the standard FEM~approach: Let {Vi}xe(0,1), Vi C c;M),
be a family of finite-dimensional subspaces of V satisfying the condition

VoeV {uw}, m€Vh:vp—o>vinVash - 04. (7)

If @ C 2 is a polygon, V;, can be, for example, a space of piecewise linear
functions over some regular triangulation 75 of Q (see [2]). Furthermore,
we need to approximate the convex set K: Let {Kh}ne(o,1) be a family of
nonempty, closed, convex subsets of V}, satisfying

Vve K I{vn}, v € Kp:vp—vinVash — 04, (8)
{vn}, vh € Kp:vp—vinVash—- 0 =v€EK (9)

(see [4]-[6]).

For constructing the FEM—space Y3, we have to be more careful. Asin the
approximation of the variational inequalities of the second kind (see [4],[5])
we first fix a quadrature formula

[ROCEEVCNCY WOTE) SLHE VN

where ¢}, are weights and z} are nodal points of the quadrature formula,
which we use to approximate the integral [y X -wdz (or fp & -vdz) (in
[4],(5] it is used for approximating the convex function J(u) = [q, 7(u(z))
dz (or J(u) = Jp, j(u(z))dz)). Then we define another partition 7y of Qn
(or T'g), Qo C Qp, satisfying
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(l) ﬁh = U Kh, '

(i) ma&_'l,‘__,mh{ dlgmeter of K;} < h;

(iii) int K} N int K] =0Vi#j;

(iv) K}, is closed and has a nonempty interior for each ¢ = 1,. oMb

(v) for each i = 1,...,my, there is exactly one point z} € int Kz nQ;

(vi) my( int K7 N Q) =ck, i=1,..,mp (my is the Lebesgue measure in
N

The space Y}, is defined such that it contains all restrictions to Qg of piecewise

constant functions over 7/, i.e.,

Vi ={f=(f1, fr) € L= ™) : 3f = (F1, .o, Far) : Qn = M,
Filint Ki is constant : = 1,...,mp,7=1,..., M, f= fla, }-

We define in a similar way X, a space of functions components of which are
piecewise continuous functions over the partition 7}/

Xh = {f = (fl:**-;fM) € LOO(QO)M) . af = (fl) ’f~M) . Qh - M:
fjlint Ki is continuous ¢ = 1,...,mp,7=1,..., M, f = fla, }-

To define the approximation problem we have to define also a linear mapping
Py, 1 Xy — Yh, the so called mass lumping operator:

(Prnf)(z) = Zf(-"?h)( int K*)(-”?) z € o,

where &+ Ki is the characteristic function of int K%. The following consis-
tency condltlons between the spaces V, and Y} are assumed:

vp = vin V as h — 04 = there exists (11)
a subsequence of {vs} such that Ppvp — vin Y7 as A’ — 0,;
| Pull vy < Ca, (12)

where C4 is a positive constant independent of h. For the problem (P2) we
can define the partition 7} over Iy, the spaces Y;,X}, and the linear operator
Py, in a similar way.

It remains only to approximate the bilinear form a and the linear form
(g,)v- This can be done by using the standard approach, i.e. using appro-
priate numerical integration formulae (see [2]): Let ap : Vi X Vi — be an
approximation of a satisfying the following properties:

dm >0: |(1.h(’ll..h,'l)h)| < Tr"l”’ll..thn’Uh”V VYup, vy € Vi, Vh € (0, 1); (13)
3 > 0 : ap(vk, vr) > G||lval|3 Vor € Vi, VR € (0,1); (14)
up — u,vp o vin V as h — 04, up,vp € Vi = (15)
ap(un,vr) — a(u,v) and ap(vp, up) — a(v,u) as h — 0+
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and let gp € V) be an approximation of g such that

3B > 0 : [{gn, va)v,| < Bllvnllv Yon € Vi, YR € (0,1); (16)
vp—~vinVash—> 04, vpeVp = (17)
(9R, vR)v, — (g, v)v as h — Oy,
where V}, is the dual space of V3 and (-, ')y, the corresponding duality pair-
ing.
Using the defined notations we are now able to define fully discrete FEM-
approximations of the problems (P1) and (P2) as follows:

find up € Kp and Xp(up) € Ya such that
a,h(uh,'vh — 'u,h) + fﬂo Ay - (thh — Ph’ll.h) dz

Pi
> (grh,vh — un)v,, VYU € Kp (P1)n
and Ay (z) € 05((Prun)(z)) a.e. in Qo

and
find up € Kp and Xp(up) € Yy such that
ah(uh, vy — 'u,h) + fr‘o Ay - (Ph'vh - Ph'u,h) dz (P2)h

> (gh,Vh — up)v, Vun € Kp
and X(z) € 85((Prup)(z)) a.e.in Ty.

It is possible to show that firstly the discrete problems are solvable and
secondly that the discrete problems are closed on subsequences to the con-
tinuous ones, i.e.

THEOREM 2. There ezists at least one solution (up, Xn(up)) of (P)n for
all h € (0,1) and we can find a subsequence of {(un, Xn(un))} such that
upr converges strongly to v in V and Xp(up') converges weakly to X inY.
Moreover, (u, X) is a solution of (P).

For the proof of this theorem we refer to [12].

3. Substationary points of the corresponding nonconvex energy
functions

Throughout this section we shall assume that the bilinear form a and its
approximation ap, b € (0,1), are symmetric. Let us define a function L
from V to as follows:

L(v) = 5a(v,v) = (g, v)v + I(v), (18)
where

J(v) = /ﬂ j(v(e))dz, (or J(v)= /F i(o(=)) de), (19)
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and its approximation Ly : Vs, — , h € (0,1):

Lu(wn) = 5 on(om,on) — (g, 00}y, + Jn(on), (20)

where Jp(vp) = J(Pypvp) for all vy € V. Since the function j is locally
Lipschitz continuous and it satisfies (4), it is easy to see that J and Jj are
also locally Lipschitz continuous, and consequently L and Ly.

The main aim in this section is to show that all substationary points of
L on K and Ly on K}, are solutions of (P) and (P)p, respectively. By a
substationary point we shall mean the following:

DEFINITION 1. Let f be a locally Lipschitz continuous function from a
Banach space X to . A point ¢ € X 1s called a substationary point of f iff
0 € 0f(z) + Nk(z), where 3f(z) is the generalized gradient of f at ¢ and
Nk (z) the normal cone to K at z.

In the sequel we shall consider only the case (P1), because (P2) can be
treated in a similar way.

PROPOSITION 1. It holds that every substationary point of L is a solution
of (P1).

PROOF: Let u be a substationary point of L on K, i.e.
0 € dL(u)+ Ng(u) = Au+ 0J(u) — g + Nkg(u), (21)

where A : V. — V' is defined by (Av,w)y = a(v,w) for all v,w € V.
The equality holds in (21) due to Corollary 1 of Proposition 2.3.3 in [3].
Therefore, there exist X' € dJ(u) and w € Ng(u) such that

0=Au+X —-g+w. (22)
;From [1] we know that X satisfies the relation
X(z) € 95(u(z)) a.e. in Qq. (23)

Using the definition of the normal cone, i.e. (w,v)y < 0 for all v € Tx(u),
Tk (u) the tangent cone of K at u, and the fact that K is a convex set we
have that '

(w,v—u)y <0 VveEK. (24)
Substituting (23),(24) to (22) we obtain
{ 0=(Au+X —g,v—u)yy + (w,v—udy

<{(Au+ X —g,v—u)yy YwveK
and X(z) € 9j(u(z)) a.e.in Qy,
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i.e. u solves (P1). Thus the proof is complete. (I
Next we shall show that the corresponding result holds also in the discrete
case. First we shall express the problem (P1), in a matrix form (as the
discretization parameter is fixed, we shall skip it in many situations). Let
{p? =1 be the basis of V. We shall make identifications V, =™ and Y =
[M]™ where m is the number of the nodal points of the quadrature formula
(10). Moreover, we shall identify v = > 5=1v;¢’ € Vi, with the nodal vector
v = (v;)%-, € ™. Let us define an m X n-matrix P = (Py;), Pj; € M as
follows
P;; = (Pho’)(zY), i=1,...,mj=1,..,n, (25)
where *,7 = 1, ...,m are the nodal point of (10). Let us use the following
notations: K :.{v €":v € Kn}, A = (an(¢",¢?))7 ;=1 an n X n-matrix
and g = ((gn, ¥’)v,)7=1 € ™. Then the problem (P1) is equivalent to

(v—u)TAu+ (Pv-Pu)ls > (v-u)fg ¥wekK

{ find u = (u,...,u,) € K and s = (s, ..., 5p) € [M]™ such that
and s; € ¢;05((Pu);) 1=1,...,m.

PROPOSITION 2. It holds that every substationary point of Ly, is a solution
of (P1)y.

PROOF: The function J : ® — , J(v) = Jp(v) for all v € V4, can be written
as a composite function J o P, where P is the m x n-matrix defined by (25)
and J : [M]™ - is a function defined by

Iv)= icij(vi). (26)

The generalized directional derivative of J can be estimated as follows:

. I(v+z+itw)-J(v+a)

J°(v;w) = limsup , (27)
z—0,t—0
— limsup Yo eii(vit zi +twi) — 3T eig(vi + 20)
Zz—0,t—04 {
< ici Jim sup J(vi+z; + tiw;) — j(vi + 2;)
N =1 Zi—0k—04 t;

m
= > i (viswi)
=1

This implies that the following holds: if s € 8J (V) its components necessarily
satisfy the relation

si € ;05(v;) i=1,...,m. (28)
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Furthermore, applying Theorem 2.3.10 of [3] we get that every element s’ €
0J(w) can be decomposed into the form

s’ = PTs, (29)

where s € 8J(Pw).
Let u be a substationary point of Ly on K. Using the same arguments
as in the proof of Proposition 1 we get firstly that

0€ Au+ 0J(u) — g + Ng(u), (30)
and secondly that there exists s’ € 8J(u) such that
v-uwlAu+(v-—u)ls'>(v-u)lg vve K. (31)

Substituting (28) and (29) into (31) we get that every substationary point
of Ly is a solution of the following problem

find u = (u1,...,u,) € K and s = (sq,...,8m) € [M]"‘ such that
{ (v-u)TAu+ (Pv-Pu)ls>(v-u)lg vwekK
and s; € ¢;07((Pu);)) i=1,...,m,
which is nothing else that (P1)s. Thus the proof of this proposition is
complete. [

Combining Theorem 2 and Proposition 2 we see that one possible way to
numerically solve the problem (P) is to transform the discrete problem (P)s
to the problem of finding a substationary point of the corresponding poten-
tial function L, because it holds that the substationary points of L tend
to the solutions of (P) on subsequences. And now because local minima of
a locally Lipschitz continuous functions are its substationary points, we can
use nonsmooth optimization methods (see the next section) for finding some
of the solutions of (P). On the other hand if we want to numerically solve the
problem of finding a substationary point of the function L, which is more
restricted than the problem (P), we cannot use exactly the same approach.
This is because of the fact that the limits (not even limits of subsequences)
of the substationary points of L are not necessarily substationary points of
the function L. The only thing what we can show is that the global minima
are preserved on subsequences as h tends to 0. That is why one has to use
global nonsmooth optimization methods for solving the substationary point
problem of L.

For the completeness let us prove the above mentioned result of the global
minima.

PROPOSITION 3. The global mimina of the function Ly, h € (0,1), con-

verge strongly in V on subsequences to the global minima of L.
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PROOF: Using the well-known result of the calculus of variations that a
weakly lower semicontinuos and coercive function defined on a nonempty,
closed, convex set of a reflexive Banach space has at least one minimum
point, we obtain that the functions L and Ly, h € (0,1) have a minimum
point. The coerciveness holds due to the sign condition (3), the coerciveness
conditions of a,ap (6),(14) and the weak lower semicontinuity is satisfied
because of the compact imbeddings (1),(2), the weak lower semicontinuity
of %a(-, -),%ah(-, :)-

Let {un}, un € V4 be a sequence such that up is a minimum point of Ly
on K. Then

1
Eah(uh,uh) — {gn, un)v, + J(Prup) (32)

1
< Eah('vh,vh) —{gn,vn)v, + J(Prvn) VYvp € Kp.

iFrom Theorem 2 and Proposition 2 it follows that we have a subsequence
{un'} which converges strongly to some element 4 € K in V. Passing again
to a subsequence if necessary we also have that { Py/up } converges strongly
to win Y due to (11). Now it is easy to show that u is a minimum point of
L on K. Indeed: Let v € K be given. Because of (7) there exists a sequence
{vn}, vn € Kp such that v, — v in V. Letting h — 04 in (32) we get that

1
ga(w,u) = (g, u)v + J(u) (33)
< %a('v,'v) —{g,v)v+J(v) YveK,

i.e. uis a global minumum point of L on K. []

4. Proximal bundle method for nonsmooth nonconvex
optimization

In this section we concentrate on the question how to generate substationary
points of the locally Lipschitz continuous function f from ™ to on the subset
Kcm

PROPOSITION 4. It holds that every local minimizer is a substationary
point of f on K.

For the proof we refer to [3].
Due to the Proposition 4 we consider the following nonsmooth, nonconvex
and constrained optimization problem

minimize f(z)
{ subject to z € K. (GP)
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In what follows our feasible set K has a more specific structure, i.e.
K={ze"|gz)= max g(s) <0},

where each g; from ™ to is a locally Lipschitz continuous function. We
suppose that at each z € ™ we can evaluate the function values f(z), g(z)
and arbitrary subgradients ¢/ € 9f(z), ¢9 € dg(z).

The nonsmooth optimization methods for solving (GP) can be divided
into two main classes: (Kiev) subgradient methods and bundle methods.
The principle behind subgradient methods is to generalize smooth gradient
or quasi-Newton methods by replacing the gradient by an arbitrary subgra-
dient. This simple idea leads, however, to difficulties with a priori choice
of the step size in line search operation and the lack of an implementable
stopping criterion.

In this paper we construct a bundle method for the problem (GP). It is a
generalization of the method introduced in [9] to the nonconvex constrained
case, and is based on the method derived in [15]. For further study of bundle
methods we refer to [16] and [17].

4.1. DIRECTION FINDING

The idea of our method is to form a simpler approximation for the problem
(GP). Suppose that the starting point z; is feasible and at the k-th iteration
of the algorithm we have the current iteration point zx € ™, some auxiliary
points y; € ™ previous iterations and corresponding subgradients ¢ f € df(y;)

for 7 € J}‘ and ff € Og(y;) for 5 € J:, where the index sets J]’f, J: C

{1,...,k} are assumed to be nonempty. We define the linearizations at z € *
by
fi(e) = fw;) + ()T (e —y;) forall jeJf and (34)
9i(z) = 9(%;) + (&) (z —y;) forall jeJ;. (35)

Note that we do not need to store the auxiliary points y;, since by denoting
fF = fi(zx) and g¥ = g;(zx) the we obtain the following recursive updating
formula

Y = (6D (k4 —2x) forall jeJ¥ and (36)
gt =g+ (&) (ahr —zk) forall jeJg. (37)
Furthermore, for all z € ™ we define the polyhedral approximations by
fMz) = max{fi(z)| ] € J}} (38)
i*2) =max{g;(s)|j€ ¥}  and (39)

i+(z) = max{f*(z) - f(zx), #*(2)}, (40)
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which all are convex functions.

As in the classical cutting plane method [7] we replace the original objec-
tive and constraint functions by their polyhedral approximations. By using
the function H* we get over the constraints. In order to avoid the poor con-
vergence rate of the cutting plane method, we add to the objective function a
regularizing quadratic penalty term %][d]lz To improve further the method
we exploit the proximal bundle idea due to [9] and [23], and we multiply
this penalty term by a weight ug > 0 to obtain the following unconstrained
cutting plane approximation of (GP)

minimize H*(zj + d) + %||d||? (CP)
subject to d € ™.
Due to the nonconvexity we define the distance measure by
k-1
sf =|lz; — y;]| + Z |Zit1 —zs]| for j=1,...,k—1, (41)
=3
st = ||z — il (42)
and the subgradient locality measures by
By ; = max {|f(zx) — fFl, 75(s5)’} forall jeJf, (43)
-, = max {Igﬂ, 'yg(s_{f)z} forall je J:, (44)

where v > 0 and 4 > 0 are the distance measure parameters (v = 0 if f
is convex and 4 = 0 if g is convex).

Note that the problem (CP) still is a nonsmooth (piecewise linear) opti-
mization problem. However, due to special minmax-structure, it can be
rewritten as

minimize v + %||d||?
subject to — A5+ (¢)Td<v forall je 7 (BP)
and - ,35,_.,' + (f?)Td <wv forall jeJg,

which is a quadratic (smooth) problem. In convex case (yf = 74 = 0) the
problems (CP) and (BP) are equivalent. For computational reasons it is
more effective to solve the dual problem of (BP), i.e. we find multipliers A;?

for j € J§ and p¥ for j € JF that solve the problem

minimize || Sie s Ai€] + T i€l

+ Eje]}‘ A.‘iﬂl}:,j + Eje];; #jﬂg,]‘ (DP)
subject to EjeJJ’f Aj + Ejejl; p; =1
and Ajy gy > 0.
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THEOREM 3. Problems ( BP)} and (DP) are equivalent, and they have unique
solutions (dg,vg) and (\% 5 ,u,]), respectively, such that

1
de = - | 5 Nl + 3 ke, (45)
k jeTk jedk
v = —ugldel|F — Y ARpE - 3" bk (46)
jel} jeJk

For the proof of the above theorem we refer to [15].

4.2. SUBGRADIENT AGGREGATION

We note that the larger the index set J }“ and JSI; are the more accurate

the polyhedral approximation H¥ is. Thus the simplest strategy is to choose
J J’E = J: ={1,...,k}. However, in practice this choise presents serious prob-
lems with storage and computation time after a large number of iterations.

Next we shall present the subgradient aggregation strategy (cf. [8]) for
keeping the dimension of the problem (DP) bounded. Let )\f forje J }“ and

,uf for 5 € J: be the Lagrange multipliers of the problem (BP) at iteration
k and denote )\’} = Ejel}‘ )\f and ,u’g“ = EJ’EJ; ,uf. We define the scaled
multipliers for all 7 € J }“ and 7 € JZ; by

Sk _ {Af/)\k, if >0

: nd ke {#?/#’;, if pk >0
=

. fy = )
1/1J%, if k=0 7 1/|JF, ifpk=0
and the aggregate subgradients by
k 7k 3
(P fp) = 2 MEhLf5)  and (0,35 = Y B 9))-
jett JeJk
Our aim is to add into the problem (BP) the aggregate constraints
—ﬁ’;’p (p’})Td <wv and (47)
gyt (p5)Td <, (48)

where ﬁ’;’p = max {|f(zx) — f;f], 7f(.§f)2} and ﬁsﬁp = max {|§£|, 7g(§’g“)2},
and the aggregate distance measures are defined by (s} = s; = 0)

El}zzjejk)\ 83 —I—)\’c Zp,].s']-l—,u,p s (49)
jeJk

st =85 4 ||z — okl it = 85 4 ek — - (50)
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However there is one drawback: at the beginning of iteration k the vectors p’}

and p’; are still unknown. This can be avoided by employing the information
of the previous iteration as follows. Due to formulas (36) and (37) we define

= f 4+ 05 (ek41 — zx) and (51)
gkt =G+ (P5) T (2kgr — zh). (52)
At the first iteration let z; € K be a feasible starting point supplied by
the user, then we initialize our algorithm by y1 = 21, p$ = E{ € f(wn),
Py =& € 09(n1), f = fi = f(m1), gp = 91 = 9(31) and J} = J] = {1}.
At iteration k& we replace the unknown vectors f:, ﬁg, p’; and p’; by the

k—1

previously generated fllf, gI’,f, p’;_ and pg~ ", respectively, and define

ﬂ'ﬁp = max {|f(zx) - fz], 7(s§)°}  and
ﬂg,p = ma‘x{lgpl’ ”Yf(s )2}, (53)

This leads to the following aggregate modification of (BP)

minimize v+ %£||d||?
subject to —ﬂfJ (Ef)Td<'u forall 5 EJf
ﬂi,, (PE)Td <o (ABP)
i+ (ETd<v forall jeJk
and —ﬂgp+(pk NTg <

and via dualization we find multipliers )\p, pp, Ak for j € Jk and pk for
jE J: that solve the problem

minimize 2u. I3 jek A 5 + >‘pr +3; e pitl -I-#ppk_le
+ EJEJk AJ‘BfJ + APﬂfp + EJEJ’e #J‘BQ,J + "Pﬂg,p
subject to E]EJ? )\ + X+ EJEJ; it pp=1
and Ajy Aps fhgs fip > 0.
(ADP)
Suppose now that (AL, ';;,Af,p,]) is the solution of the problem (ADP).
Then we can similarly denote A = A’; + szJJ’E A;? and ,u’; = p,’; + zje]{; ,u,;?

and define the scaled multip]iers for all j € J}“ and 5 € J}“ by

{,\;?/,\k, if Xk >0 Sk _ {,\’;/Ak, if A >0

3\ — =
=105 +1), k=0 P =\ /(175 +1), i )=

J

and

~k _ w5 g if pg >0 ik = #’;/#’5, 'ff,u2>0
P YTl + L), ey =0 PGl +1), ifpg=0
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and the aggregate subgradients by

5, 7%) = 30 R(ed, i)+ MEh T 7)) and (54)
jeT}

(o5, 55) = S b (e, gb) + BE(E, ). (55)
jeJk

Finally we denote by

Peo= 30 NE T Y i Tt and (56)
j€T} JjeJk
ﬁ: = A’Jc‘ﬁl;p—l'y'g s’;p (57)

THEOREM 4. Problems (ABP) and (ADP) are equivalent, and they have
unique solutions (dg,vx) and ()\p,p,p, J,,u,;“), respectively, such that

1
dp = —— 58
k ukpka ( )

—u|di]|> — BE. (59)

For the proof we refer to [15].
In theory this aggregation strategy allows us to choose the index sets J }“

Uk

and J;“ quite freely. In practice this choice still has a strong effect on the
trade-off between efficiency and amount of work per iteration. To strike a
balance we use a user-supplied bound M; > 2 on the number of indices.

4.3. LINE SEARCH

Due to the trust region idea the proximal bundle type methods in convex
case do not require any uncertain and lot of function evaluation demanding
line search operation. In nonconvex case we cannot avoid line search in order
to guarantee the convergence.

We assume that my, € (0,3), mgr € (myz,1) and ¢ € (0,1] are fixed line
search parameters. First we shall search for the largest number t& ¢ [0,1]
such that

(a) f(zx + thdy) < flzk) + mptiug,
(b) g(zk + thdi) < 0,
(c) t& > &

If such a parameter exists we take a long serious step: g1 = Tk + t’idk
and Yry1 = Try1. Otherwise, if requirements (a) and (b) hold but 0 < t& < ¢
then we take a short serious step: zx; = zx + tk di and ypy1 = 2k + thk,
and if tL = 0 we take a null step: zxy1 = and Ypt1 = Tk + thk, where
tk, >tk is such that
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(d) =851+ (&, )T di > mpoy.

In long serious steps there occurs a significant decrease in the value of the
objective function. Thus there is no need for detecting discontinuities in the
gradient of f, and so we set E}:H € 0f(@k+1)- In short serious steps and null
steps there exists discontinuity in the gradient of f. Then the requirement (d)
ensures that zx and ygy; lie on the opposite sides of this discontinuity and
the new subgradient E}: 1 €0 f(yk41) will force a remarkable modification
of the next search direction finding problem. In what follows we are using
the line search algorithm presented in in [15], which finds step sizes t& and
tk such that requirements (a)—(d) hold.

4.4, WEIGHT UPDATING

The last but not least important open question is the choice of the weight
ug. The simplest strategy might be to keep it fixed up = uy;;. This, however,
leads to several difficulties. Due to Theorem 4. we observe the following;:

i) If uys;, is very large, we shall have small |vg| and ||dg||, almost all steps
f g
are serious and we have slow descent.

(ii) If uyiy is very small, we shall have large |vg| and ||dy||, and each serious
step will be followed by many null steps.

Therefore, we keep uy as a variable and update it when necessary. In this
we use the safeguarded quadratic interpolation technique due to [9].

4.5. PrROXIMAL BUNDLE ALGORITHM

Step 0: (Initialization) Select a starting point z; € K, a final accuracy tol-
erance £, > 0, the maximum number of stored subgradients M; > 2,
an initial weight u; > 0 and line search parameters mp € (0,%),
mpg € (mg,1) and t € (0,1]. Choose the distance measure parameters
v¢ > 0 and 4 > 0 (y¢ = 0 if f is convex; 74 = 0 if g is convex). Set the
iteration counter k¥ = 1 and initialize the following variables: y; = z1,
p} =& €df(w), vy =& € 0g(w1), f3 = f1 = f(w), g3 = g1 = 9(w),
s}:s;:s%:OandJ}:ngz{l}.

Step 1: (Direction finding). Find multipliers )\’;, ,uf;, )\? forjeJ }“ and ,u,;?
for 5 € J;“ by solving the problem (ADP). Calculate multipliers )\’;, ,u,’;,

Xk, ik, & and ik for j € J§ and j € J¥ and set

(0%, 7%, 88) = 3O M, ) + X £r 5B, (60)
.‘iGJJ’,‘
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(ph,55,85) = D kel gk, s%) + pE (P51, of, sh),
jeTk
pe = Miph + pkpk,
B, = max {|f(zx) - F5l, 1£(55)%),
s, = max {|gF], 14(8)},
le: = ’\I;ﬁl;,p + '“chﬁsl;,p'

Set di, = —ulkpk.

Step 2: (Stopping criterion). Set
1 .
we = el + B2
If wp < e, then STOP.

417

(61)

(62)
(63)
(64)
(65)

Step 3: (Line search). Find step sizes t& € [0,1] and t& ¢ [tk, 1] by the line
search algorithm of [15]. Set zx11 = =% + t’f,dk and Yr41 = Tk + t’;‘dk.

Step 4: (Linearization updating). Calculate the linearization values

= pEr (e, for je T,
G = g (), for je T,
H = hbthldll, for je TFUTE,
= FE (05 e,

gEtt = gk + k(o5 dy,
S5t = &+ e fldkll,

= ot
Evaluate El]:+1 € 0f(yry1) and &, € 09(yr41) and set
felt = F(wenn) + (8 = tR)(E41) d

g;cci} = g(¥e+1) + (tlf, - tllg:)(gz+1)Tdk’
k k k
sits = (th —t5)lldill.

(66)
(67)
(68)
(69)
(70)
(71)
(72)

(73)
(74)
(75)

Step 5: ( Weight updating). Select ugyq1 by the weight updating algorithm of

[9].

Step 6: (Updating). Set J§t' = JF U {k + 1} and JF+! = J* U {k + 1}. If
|T5TH > My, then JEH = J¥*\ {min j | j € JE} I |TRY) > My,
then J¥*1 = JE+1\ {min j|j € J¥+'}. Increase k by 1 and go to Step

1.
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If we assume that f is weakly semismooth, i.e. the directional derivative
f'(z;d) exists for all z and d, and f'(z;d) = limejo(¢F)Td, where ¢f ¢
df(z + td), then the convergence of the above algorithm can proved in the
same way as in [8].

5. Numerical results

In this section we shall present one example of hemivariational inequalities
in nonsmooth mechanics of solids, namely a nonmonotone contact problem.
Its approximation and numerical realization will be based on the methods
presented in the previous sections.

Let us study a two—dimensional undeformed elastic body represented by
a bounded domain Q C 2 and let T’ be the boundary of . We shall assume
that the body is subjected to internal and external forces which cause the
deformation of the body. We denote by n = (n;)2_; the outward unit normal
vectorto I, o = (O'ij)?’jzl the stress tensor, € = (e,'j)f,jzl the strain tensor,
S = (8; = oyn;)?; the boundary force and u = (u;)2_, the displacement.
The boundary T is divided into three nonoverlapping open sets I'y, I's and
T3 such that I' = T3 UT, UT3. Let us suppose that the domain € is as in
Fig. 1, i.e.

Q= {(z1,22) €2 : 21 € (a,b) and z, € (a(z1),7)}, (76)

where a, b, are positive constants and o € CV!([a,b]), @ > 0. We assume
that on T'; the displacements are given by

u(z) =U(x) onT;. (77)

For simplicity, we consider the homogenous boundary value U = 0 on T';.
On the other hand on I'; the boundary forces are given by

S(z) = g'(z) on T,. (78)

Furthermore, we assume that I's, which is a graph of the function «, i.e.
T3 = {(z1,22) € 2 : z; € (a,b) and z; = a(z;)}, can be in contact with a

Fig. 1. Contact problems of a linear elastic body
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Fig. 2. Nounmonotone contact laws

nonmonotone frictionless foundation. Thus the body obeys on I's the fol-
lowing system of boundary conditions:

—Sa(z1) € 87 (ua(z1, a(z1)) + a(z1)) a.e. z € (a,bd) (79)
S]_(:l)]_,a(zl)) =0 a.e. T € ((1., b),

where j is a locally Lipschitz continuous function from to satisfying (3)
and (4) (see in Fig. 2a the generalized gradient of 7). We shall also consid-
er a contact problem with a rigid foundation and a nonmonotone layer of
thickness d above it (see Fig. 1). Now the conditions (79) are replaced by
(see Fig. 2b)

—~S3(z1) € 8j(ua(z1, a(z1)) + a(z1)) ae. z € (a,b) (80)
up(z1,a(z1)) > —a(z1) - d a.e. z € (a,b)
Si(z1,a(z1)) =0 a.e. t € (a,b).

We assume that the linearized strain tensor ¢ obeys the Hooke’s law of the
form

1,0 d
oij = cijueh(u), where ep(u) = 5(6_1:;_ + 5%) (81)

and the elasticity coefficients c¢;;x; satisfy the usual symmetry and elasticity
conditions in 2. Then the equilibrium state of Q is described by means of
the following system:

oi;+9i=0 inQ, i=12, (82)

where g2 is a body force. We shall assume that g2 = 0. The weak formulation
of the contact problem in the case of (79) reads as follows:

a(u,v) + Jp, X(z)va(z)ds = (¢, v)or, Vv eV (P)

{ find v € V and X(u) € L%(T3) such that
and X (z) € 9j(ua(z1, a(z1)) + a(z1)) ae. z; € (a,b),
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where V is the space of admissable displacements defined by
V={v=(v,v)€(H()? :v,=00nTy, i=1,2}, (83)

a is the bilinear form from V X V to defined by a(u,v) = [, cijrer(n)
€ij(v) dz for all u,v € V and (-,-)o,r, is the (L%(T;))%-norm. In the case of
the rigid foundation with a nonmonotone layer, i.e. (80) the weak form is
the following:

a(u,v — u) + fp, X(z)(va(z) — uz(z)) ds > (¢',v — u)or, Vv € K (CP)

{ find u € K and X'(u) € L%(T3) such that
and X(z) € 8j(uz(z1,a(z1)) + a(z1)) ae. 1 € (a,b),

where K is a nonempty, closed, convex constraint set defined by
K ={v eV :w(z,a(z1)) > —a(z1) — d a.e. in (a,b)}. (84)

Let us consider the approximation of the problems (P) and (CP) (since
h is fixed we shall skip it in many places). First we define 5 a polygonal
approximation of Q. Let a = ap < a1 < ... < @,y = b be a partition of
[a,b] and oy be a piecewise linear function such that ax(a;) = a(a;) for all
1=20,1,...,m. Then we set that

Qn = {(z1,23) € % : 21 € (a,b) and z; € (an(z1),7)} (85)
Tap = {(z1,73) € 2 : 71 € (a,b) and z2 = an(z1)}. (86)
For V}, we choose the space of piecewise linear functions over a regular tri-

angulation 7y, of 0y, such that the whole segment {(z1,2;) : 1 € [a;_1,a]
and z3 = ax(zy)} is the whole side of some triangle T € Ty,

Vi ={v e (C(Q))? : v|r € (P(T))* VT € T, v=0o0nT1}. (87)

Let {¢’ 7_1 be the Courant basis functions of V3. The approximation of the
constraint set K is defined by

Kp = {v € Vi : v2(a;, an(a;)) > —an(a;) —dforall i =1, ..,m}. (88)
For approximating the integral [r. = X'(z)va(z) ds we use the following numer-
ical integration formula

m—1

[ f@)dsx 3 as an(@))assr, on(ai)) (89)

%(f(a,i, ah(ai)) + f(afi+1; ah(a'i+1)))’

where |(a;, @n(@;))(@it1, @n(ait1))| is the length of the line segment from
(a;, an(a;)) to (@it1, an(ait1)). It is easy to see that this formula is related



HEMIVARIATIONAL INEQUALITITES AND NONSMOOTH OPTIMIZATION 421

to the well-known trapezoidal rule. Thus the nodal points and the weights
of (10) are

ot = (a;,an(a;)) i=1,..,m; (90)
i = 5(aio, con{azoa)) (e, an(a) (o1)
+l(ai; an(a:))(@ir1, an(aira))) 1=1,...,m—1;

m = 5 1(am-1, @n(am-1))(om, @n(am)]

In order to write the discrete problems in the matrix form we need to define
an m X n matrix P corresponding to the linear mapping Pj introduced in
Section 2. Indeed: due to the choice of the formula (89) it reads as follows:

(Pv): = { vj, if vj corresponds to the vertical displacement (92)

of the nodal point (a;, an(a;)) € Tan

Then, the approximation problem (P) is defined by

vIiAu+ (Pv)Ts =vlg ¥ver (P)n

{ find u € ™ and s € ™ such that
and s; € ¢;07((Pu); + an(a;)) i=1,..,m,

and, consequently, (CP)y

(v—-w)TAu+ (Pv-Pu)Ts> (v-u)lg VvekK (CP)s

{ find u € K and s € ™ such that
and s; € ¢;05((Pu); + an(a;)) i=1,..,m,

where the n X n-matrix A, the "—vector g and the constraint set K is defined
as in Section 3.

In the numerical realization we transform first (P)a and (CP)n to the
_ problems of minimizing the corresponding potential function, i.e.

arg miny.L(v) or arg minygL(v), (93)

where L : ™ — is defined by

L(v) = %VTA.V ~vlg+I(v), J(v)= i": cij ((Pv)). (94)

Then we make use of the fact that the nonlinear behaviour of the contact
problem is prescribed only in the nodes of T's;: We list the components of u
representing the nodal displacement on I'sp, first. Then we can decompose u
as follows: u = (uy, uy). We eliminate uy from (P)a,(CP) and, consequently,
from L. Thus the size of our problem, i.e. the number of the unknowns is
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reduced from 2m(m + 1) to 2m (the number of the subintervals in z— and
y—directions is m).

In the numerical calculations we used the plane stress model and the
following values: @ = 0, b = v = 1, a(z1) = 0.25 + z1(z, — 1), d = 0.04,
¢ =5 and g' = —0.15. We solved the both problems (P); and (CP)y using
m = 10,20, 40,60 (see Fig. 3 and Fig. 4 for the solutions with m = 20). Fig.
5 show the displacements of the nodal points on I'sp of the solution of (P)s
(solution 1) and the solution of (CP)s (solution 2). We can see that some of
those nodal points of the both solutions are on the branches AB and CD of
Fig. 2 a),b) implying that the nonmonotone contact law really affects. The
flat part of the solution 2 in Fig. 5 points out that some of the nodes on I'sy,
are contact with the rigid foundation (the branch DE of Fig. 2b) affects).
Therefore the displacements of the solution 2 were smaller. Tables I and
II show (L?(T'sp))?-error, the needed CPU-time in seconds, the iterations
number and the value of the minimized function L. The results showed
very good convergence in (L%(T's3))?-norm (as an exact solution is used the
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Fig. 5. Displacements of solutions 1 and 2 on I'zn

TABLE 1. Solution 1

m  (L*(Tap))?—error CPU/sec iterations value of L

10 T7.7e-3 2.7 44 -4.71e-3
20 4.1e-3 6.8 61 -4.84e-3
40 6.5e-4 46 114 -4.93e-3
60 * 480 146 -4.96e-3

solution obtained with m = 60). The main drawback was that the CPU-
time increased quite rapidly when the number of the unknowns incresed,
although the iteration numbers behaved quite reasonable. This suggests that
the implementation of the nonsmooth optimizer which takes into account
the special structure of the considered problem may improve the efficiency
of our numerical approach. If we compare the results without elimination
(as m = 20 the iteration number was 600 and CPU-time 380 sec) we see
that our elimination stragegy was justified. Finally we would like to remind
that these numerical results have pointed out that the used nonsmooth,
nonconvex optimizer is very effective and reliable when the number of the
unknowns is hundreds (the total number without elimination was thousands)
and it can also handle problems with few thousands unknowns.
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